Multi-symplectic discretisation of wave map equations

作者: Olivier Verdier , David Cohen

DOI: 10.1137/15M1014322

关键词:

摘要: We present a new multi-symplectic formulation of constrained Hamiltonian partial differential equations, and we study the associated local conservation laws. A discretisation based on this is exemplified by means Euler box scheme. When applied to wave map equation, numerical scheme explicit, preserves constraint can be seen as generalisation Shake algorithm for mechanical systems. Furthermore, experiments show excellent properties solutions.

参考文章(32)
Brian Moore, Sebastian Reich, Backward error analysis for multi-symplectic integration methods Numerische Mathematik. ,vol. 95, pp. 625- 652 ,(2003) , 10.1007/S00211-003-0458-9
Jalal Shatah, Walter Strauss, Breathers as homoclinic geometric wave maps Physica D: Nonlinear Phenomena. ,vol. 99, pp. 113- 133 ,(1996) , 10.1016/S0167-2789(96)00156-X
Terence Tao, Ill-posedness for one-dimensional wave maps at the critical regularity American Journal of Mathematics. ,vol. 122, pp. 451- 463 ,(2000) , 10.1353/AJM.2000.0023
Thomas J. Bridges, Sebastian Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Physics Letters A. ,vol. 284, pp. 184- 193 ,(2001) , 10.1016/S0375-9601(01)00294-8
J. Krieger, W. Schlag, D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps Inventiones Mathematicae. ,vol. 171, pp. 543- 615 ,(2008) , 10.1007/S00222-007-0089-3
Sören Bartels, Semi-Implicit Approximation of Wave Maps into Smooth or Convex Surfaces SIAM Journal on Numerical Analysis. ,vol. 47, pp. 3486- 3506 ,(2009) , 10.1137/080731475
Trygve K. Karper, Franziska Weber, A New Angular Momentum Method for Computing Wave Maps into Spheres SIAM Journal on Numerical Analysis. ,vol. 52, pp. 2073- 2091 ,(2014) , 10.1137/130948823
Jerrold E. Marsden, George W. Patrick, Steve Shkoller, Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs Communications in Mathematical Physics. ,vol. 199, pp. 351- 395 ,(1998) , 10.1007/S002200050505
L’ubomír Baňas, Andreas Prohl, Reiner Schätzle, Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii Numerische Mathematik. ,vol. 115, pp. 395- 432 ,(2010) , 10.1007/S00211-009-0282-Y