Achieving continual learning in deep neural networks through pseudo-rehearsal

作者: Craig Robert Atkinson

DOI:

关键词:

摘要:

参考文章(82)
Anthony Robins, , Marcus Frean, , Local Learning Algorithms for Sequential Tasks in Neural Networks Journal of Advanced Computational Intelligence and Intelligent Informatics. ,vol. 2, pp. 221- 227 ,(1998) , 10.20965/JACIII.1998.P0221
Ben Fowler, Daniel L. Silver, Consolidation using context-sensitive multiple task learning canadian conference on artificial intelligence. pp. 128- 139 ,(2011) , 10.1007/978-3-642-21043-3_16
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Daniel L. Silver, Robert E. Mercer, The Task Rehearsal Method of Life-Long Learning: Overcoming Impoverished Data Lecture Notes in Computer Science. pp. 90- 101 ,(2002) , 10.1007/3-540-47922-8_8
Michael McCloskey, Neal J. Cohen, Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem Psychology of Learning and Motivation. ,vol. 24, pp. 109- 165 ,(1989) , 10.1016/S0079-7421(08)60536-8
Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition computer vision and pattern recognition. ,(2014)
Yoshua Bengio, Razvan Pascanu, Revisiting Natural Gradient for Deep Networks arXiv: Learning. ,(2013)
Daniel L. Silver, Ryan Poirier, Sequential Consolidation of Learned Task Knowledge Lecture Notes in Computer Science. pp. 217- 232 ,(2004) , 10.1007/978-3-540-24840-8_16
Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks european conference on computer vision. pp. 818- 833 ,(2014) , 10.1007/978-3-319-10590-1_53
Max Welling, Diederik P Kingma, Auto-Encoding Variational Bayes international conference on learning representations. ,(2014)