A heterogeneous interpolant

作者: Walter Taylor

DOI: 10.1017/S0027763000015841

关键词:

摘要: In this note we exhibit an interpolant for a certain valid implication ╞ φ → ψ, where φ and ψ come from the infinitary language Lω1ω1. The existence of this interpolant follows from Takeuti’s heterogeneous interpolation theorem [5], but unfortunately the proof in [5] is not explicit enough to allow one to find the interpolant explicitly. Takeuti’s theorem asserts the existence of an interpolant in the class Lω1ω1 of heterogeneous formulas, which admits the rules of formation of Lω1ω1 plus the following additional rule:

参考文章(6)
Gaisi Takeuti, A determinate logic Lecture Notes in Mathematics. ,vol. 38, pp. 237- 264 ,(1968) , 10.1007/BFB0079692
Bienvenido F. NEBRES, Herbrand uniformity theorems for infinitary languages Journal of The Mathematical Society of Japan. ,vol. 24, pp. 1- 19 ,(1972) , 10.2969/JMSJ/02410001
David W. Kueker, Löwenheim-Skolem and interpolation theorems in infinitary languages Bulletin of the American Mathematical Society. ,vol. 78, pp. 211- 215 ,(1972) , 10.1090/S0002-9904-1972-12921-5
Jerome Malitz, Infinitary Analogs of Theorems from First Order Model Theory Journal of Symbolic Logic. ,vol. 36, pp. 216- 228 ,(1971) , 10.2307/2270256
Jan Mycielski, On the axiom of determinateness Fundamenta Mathematicae. ,vol. 53, pp. 205- 224 ,(1964) , 10.4064/FM-53-2-205-224
Gaisi Takeuti, A Determinate Logic Nagoya Mathematical Journal. ,vol. 38, pp. 113- 138 ,(1970) , 10.1017/S002776300001357X