An Interior Point Algorithm for Large-Scale Nonlinear Programming

作者: Richard H. Byrd , Mary E. Hribar , Jorge Nocedal

DOI: 10.1137/S1052623497325107

关键词:

摘要: … on the tangent space of the constraints and that tries to achieve optimality. The efficiency of the new algorithm depends, to a great extent, on how these two components of the step are …

参考文章(38)
R. M. Chamberlain, M. J. D. Powell, C. Lemarechal, H. C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization Mathematical Programming Studies. pp. 1- 17 ,(1982) , 10.1007/BFB0120945
Stephen J. Wright, Primal-Dual Interior-Point Methods ,(1987)
David M. Gay, Michael L. Overton, Margaret H. Wright, A Primal-dual Interior Method for Nonconvex Nonlinear Programming Springer, Boston, MA. pp. 31- 56 ,(1998) , 10.1007/978-1-4613-3335-7_2
Andrew R. Conn, Nicholas I. M. Gould, Philippe L. Toint, A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints Applied Optimization. pp. 15- 49 ,(2000) , 10.1007/978-1-4757-3226-9_2
I. Bongartz, A. R. Conn, Nick Gould, Ph. L. Toint, CUTE: constrained and unconstrained testing environment ACM Transactions on Mathematical Software. ,vol. 21, pp. 123- 160 ,(1995) , 10.1145/200979.201043