The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology

作者: Glenn M. Wolfe , S. Randy Kawa , Thomas F. Hanisco , Reem A. Hannun , Paul A. Newman

DOI: 10.5194/AMT-11-1757-2018

关键词:

摘要: Abstract. The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify fluxes at local to regional scales (1–1000 km), potentially helping bridge gaps top-down bottom-up flux estimates offering novel insights into biophysical biogeochemical processes. NASA Carbon Flux Experiment (CARAFE) utilizes C-23 Sherpa aircraft with a suite commercial custom instrumentation acquire carbon dioxide, methane, sensible heat, latent heat high spatial resolution. Key components CARAFE payload are described, including meteorological, greenhouse gas, water vapor, imaging systems. Continuous wavelet transforms deliver spatially resolved along flight tracks. analysis methodology is discussed in depth, special emphasis on quantification uncertainties. Typical uncertainties derived 40–90 % for nominal resolution 2 km or 16–35 % when averaged over full leg (typically 30–40 km). has successfully flown two missions eastern US 2016 2017, quantifying forest, cropland, wetlands, water. Preliminary results from these campaigns presented highlight performance this system.

参考文章(86)
E Watson Catherine, D W Barrick John, A Ritter John, K Quinn John, W Wynkoop Mark, Calibration of NASA Turbulent Air Motion Measurement System NASA Langley Technical Report Server. ,(1996)
N. Kljun, P. Calanca, M. W. Rotach, H. P. Schmid, A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP) Geoscientific Model Development. ,vol. 8, pp. 3695- 3713 ,(2015) , 10.5194/GMD-8-3695-2015
Bin Yuan, Lisa Kaser, Thomas Karl, Martin Graus, Jeff Peischl, Teresa L. Campos, Steve Shertz, Eric C. Apel, Rebecca S. Hornbrook, Alan Hills, Jessica B. Gilman, Brian M. Lerner, Carsten Warneke, Frank M. Flocke, Thomas B. Ryerson, Alex B. Guenther, Joost A. de Gouw, Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions Journal of Geophysical Research. ,vol. 120, pp. 6271- 6289 ,(2015) , 10.1002/2015JD023242
Matthias Mauder, Raymond L. Desjardins, Ian MacPherson, Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem Journal of Geophysical Research. ,vol. 112, ,(2007) , 10.1029/2006JD008133
J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, C. J. Readings, Turbulence Structure in the Convective Boundary Layer Journal of the Atmospheric Sciences. ,vol. 33, pp. 2152- 2169 ,(1976) , 10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
P. Frick, S. L. Baliunas, D. Galyagin, D. Sokoloff, W. Soon, Wavelet Analysis of Stellar Chromospheric Activity Variations The Astrophysical Journal. ,vol. 483, pp. 426- 434 ,(1997) , 10.1086/304206
M ANDERSON, J NORMAN, W KUSTAS, R HOUBORG, P STARKS, N AGAM, A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales Remote Sensing of Environment. ,vol. 112, pp. 4227- 4241 ,(2008) , 10.1016/J.RSE.2008.07.009
A. Karion, C. Sweeney, S. Wolter, T. Newberger, H. Chen, A. Andrews, J. Kofler, D. Neff, P. Tans, Long-term greenhouse gas measurements from aircraft Atmospheric Measurement Techniques. ,vol. 6, pp. 511- 526 ,(2013) , 10.5194/AMT-6-511-2013
Yonggang Liu, X. San Liang, Robert H. Weisberg, Rectification of the Bias in the Wavelet Power Spectrum Journal of Atmospheric and Oceanic Technology. ,vol. 24, pp. 2093- 2102 ,(2007) , 10.1175/2007JTECHO511.1
E. N. Brown, C. A. Friehe, D. H. Lenschow, The Use of Pressure Fluctuations on the Nose of an Aircraft for Measuring Air Motion Journal of Applied Meteorology and Climatology. ,vol. 22, pp. 171- 180 ,(1983) , 10.1175/1520-0450(1983)022<0171:TUOPFO>2.0.CO;2