High-order numerical solutions to the shallow-water equations on the rotated cubed-sphere grid.

作者: Mayya Tokman , Stéphane Gaudreault , Valentin Dallerit , Martin Charron

DOI:

关键词:

摘要: High-order numerical methods are applied to the shallow-water equations on sphere. A space-time tensor formalism is used express of motion covariantly and describe geometry rotated cubed-sphere grid. The spatial discretization done with direct flux reconstruction method, which an alternative formulation Discontinuous Galerkin approach. solved in differential form resulting free from quadrature rules. It well known that time step traditional explicit limited by phase speed fastest waves. Exponential integration schemes remove this stability restriction allow larger steps. New multistep exponential propagation iterative orders 4, 5 6 introduced. complex-step approximation Jacobian Krylov-based KIOPS (Krylov incomplete orthogonalization procedure solver) algorithm for computing matrix-vector products {\varphi}-functions. Results evaluated using standard benchmarks.

参考文章(51)
Nicholas J. Higham, Functions of Matrices Philadelphia, PA, USA: Society for Industrial and Applied Mathematics; 2008.. ,(2008) , 10.1137/1.9780898717778
J. Romero, K. Asthana, A. Jameson, A Simplified Formulation of the Flux Reconstruction Method Journal of Scientific Computing. ,vol. 67, pp. 351- 374 ,(2016) , 10.1007/S10915-015-0085-5
Colm Clancy, Janusz A. Pudykiewicz, On the use of exponential time integration methods in atmospheric models Tellus A. ,vol. 65, pp. 20898- ,(2013) , 10.3402/TELLUSA.V65I0.20898
David A. Kopriva, Gregor Gassner, On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods Journal of Scientific Computing. ,vol. 44, pp. 136- 155 ,(2010) , 10.1007/S10915-010-9372-3
Ramachandran D. Nair, Stephen J. Thomas, Richard D. Loft, A Discontinuous Galerkin Transport Scheme on the Cubed Sphere Monthly Weather Review. ,vol. 133, pp. 814- 828 ,(2005) , 10.1175/MWR2890.1
John Thuburn, Yong Li, Numerical simulations of Rossby–Haurwitz waves Tellus A. ,vol. 52, pp. 181- 189 ,(2000) , 10.3402/TELLUSA.V52I2.12258
Matthias Läuter, Dörthe Handorf, Klaus Dethloff, Unsteady analytical solutions of the spherical shallow water equations Journal of Computational Physics. ,vol. 210, pp. 535- 553 ,(2005) , 10.1016/J.JCP.2005.04.022
Paul A. Ullrich, Christiane Jablonowski, MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods Journal of Computational Physics. ,vol. 231, pp. 5078- 5108 ,(2012) , 10.1016/J.JCP.2012.04.024