Bayesian semi non-negative matrix factorisation

作者: Albert Vilamala Muñoz , Alfredo Vellido Alcacena , Luis Antonio Belanche Muñoz , None

DOI:

关键词:

摘要: Non-negative Matrix Factorisation (NMF) has become a standard method for source identification when data, sources and mixing coefficients are constrained to be positive-valued. The recently been extended allow negative-valued data in the form of Semi-and Convex-NMF. In this paper, we re-elaborate Semi-NMF within full Bayesian framework. This provides solid foundations parameter estimation and, importantly, principled address problem choosing most adequate number describe observed data. proposed is preliminarily evaluated here real neuro-oncology problem.

参考文章(9)
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565
Albert Vilamala, Paulo J.G. Lisboa, Sandra Ortega-Martorell, Alfredo Vellido, Discriminant Convex Non-negative Matrix Factorization for the classification of human brain tumours Pattern Recognition Letters. ,vol. 34, pp. 1734- 1747 ,(2013) , 10.1016/J.PATREC.2013.05.023
Siddhartha Chib, Marginal Likelihood from the Gibbs Output Journal of the American Statistical Association. ,vol. 90, pp. 1313- 1321 ,(1995) , 10.1080/01621459.1995.10476635
Albert Vilamala, Lluis A. Belanche, Alfredo Vellido, A MAP approach for convex non-negative matrix factorization in the diagnosis of brain tumors international workshop on pattern recognition in neuroimaging. pp. 1- 4 ,(2014) , 10.1109/PRNI.2014.6858550
Margarida Julià-Sapé, Dionisio Acosta, Mariola Mier, Carles Arùs, Des Watson, , A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients Magnetic Resonance Materials in Physics, Biology and Medicine. ,vol. 19, pp. 22- 33 ,(2006) , 10.1007/S10334-005-0023-X
Mikkel N. Schmidt, Ole Winther, Lars Kai Hansen, Bayesian Non-negative Matrix Factorization international conference on independent component analysis and signal separation. pp. 540- 547 ,(2009) , 10.1007/978-3-642-00599-2_68
Chris HQ Ding, Tao Li, Michael I Jordan, None, Convex and Semi-Nonnegative Matrix Factorizations IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 32, pp. 45- 55 ,(2010) , 10.1109/TPAMI.2008.277
T. Laudadio, A. R. Croitor Sava, Y. Li, N. Sauwen, D. M. Sima, S. Van Huffel, NMF in MR Spectroscopy Springer Berlin Heidelberg. pp. 161- 177 ,(2016) , 10.1007/978-3-662-48331-2_7