On Self-commutator Approximants

作者: Bhagwati Prashad Duggal

DOI: 10.5666/KMJ.2009.49.1.001

关键词:

摘要: Let B(X) denote the algebra of operators on a complex Banach space X, H(X) = {h 2 : h is hermitian}, and J(X) {x x x1 + ix2,x1 x2 H(X)}. B(B(X)) derivation a(x) ax xa. If an 1 (0) for some J(X), then ||a|| || (x xx )|| all J(X)\ (0). The cases B(H), Hilbert space, Cp, von Neumann-Schatten p-class, are considered. Then each has unique representation +ix2, H(X), we may define mapping ! from into itself by ix2 (= (x1 +ix2) ): with operator norm ||.|| such that continuous linear involution (3, Lemma 8, Page 50). Recall normal if a1 ia2 (a1,a2) a1a2 a2a1 0. We say satisfies PF- property, short Putnam-Fuglede Normal satisfy PF-property: +ia2 normal, 0 implies a1x a2x =) (4, 124). xa (La Ra)x, where La Ra denote, respectively, left multiplication right a. La, H(X). Evidently, ia2, i a2 , ( ) whenever

参考文章(12)
Frank F Bonsall, John Duncan, Complete Normed Algebras ,(1973)
F. F. Bonsall, J. Duncan, Numerical Ranges II ,(1973)
P. J. Maher, Self-commutator approximants. Proceedings of the American Mathematical Society. ,vol. 134, pp. 157- 165 ,(2005) , 10.1090/S0002-9939-05-07871-8
B. P. Duggal, A perturbed elementary operator and range-kernel orthogonality Proceedings of the American Mathematical Society. ,vol. 134, pp. 1727- 1734 ,(2005) , 10.1090/S0002-9939-05-08337-1
Yuan-Chuan Li, Sen-Yen Shaw, An abstract ergodic theorem and some inequalities for operators on Banach spaces Proceedings of the American Mathematical Society. ,vol. 125, pp. 111- 119 ,(1997) , 10.1090/S0002-9939-97-03504-1
B.P. Duggal, Range-kernel orthogonality of the elementary operator X→∑i=1nAiXBi−X Linear Algebra and its Applications. ,vol. 337, pp. 79- 86 ,(2001) , 10.1016/S0024-3795(01)00339-1
Aleksej Turnšek, Orthogonality in ${\cal C}_p$ Classes Monatshefte f�r Mathematik. ,vol. 132, pp. 349- 354 ,(2001) , 10.1007/S006050170039
B.P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator Linear Algebra and its Applications. ,vol. 383, pp. 93- 106 ,(2004) , 10.1016/J.LAA.2003.11.006
Theagenis J. Abatzoglou, Norm Derivatives on Spaces of Operators. Mathematische Annalen. ,vol. 239, pp. 129- 135 ,(1979) , 10.1007/BF01420370
Robert C. James, Orthogonality and linear functionals in normed linear spaces Transactions of the American Mathematical Society. ,vol. 61, pp. 265- 292 ,(1947) , 10.1090/S0002-9947-1947-0021241-4