Méthode Structurée de décomposition en matrices non- négatives appliquéè a la séparation de sources audio

作者: Clément Laroche , Gael Richard , Hélène Papadopoulos , Matthieu Kowalski

DOI:

关键词:

摘要: Dans cet article, nous proposons une methode structuree de decomposition en matrices non-negatives visant a utiliser la structure multi-couche des signaux audio. Les audio peuvent etre vus comme superposition deux couches : couche tonale (modelisee par sommes sinuso¨des evoluant lentement frequence et temps) transitoire (les sons percussifs, ´ ev enements courtes durees etales frequence). Notre decompose partie du signal composantes orthogonales parcimonieuses, bien adaptees pour l'extraction tandis que est representee bases classiques. resultats separation sources obtenus sur reels musique ont montre notre approche obtient similaires ceux l'´ etat l'art. Abstract – In this paper, we propose new unconstrained nonnegative matrix factorization method designed to utilize the multilayer of signals improve quality source separation. The tonal layer is sparse in frequency and temporally stable, while transient composed short term broadband sounds. Our has part well suited for extraction which decomposes orthogonal components, represented by regular decomposition. Experiments on real music data context show that such suitable signal. Compared with three state-of-the-art harmonic/percussive algorithms, proposed shows competitive performances.

参考文章(10)
Sebastian Ewert, Meinard Müller, Masataka Goto, Meinard Muller, Markus Schedl, Score-informed Source Separation for Music Signals Multimodal Music Processing. ,vol. 3, pp. 73- 94 ,(2012) , 10.4230/DFU.VOL3.11041.73
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565
Shigeki Sagayama, Nobutaka Ono, Hirokazu Kameoka, Jonathan Le Roux, Kenichi Miyamoto, Separation of a monaural audio signal into harmonic/percussive components by complementary diffusion on spectrogram european signal processing conference. pp. 1- 4 ,(2008)
Seungjin Choi, Algorithms for orthogonal nonnegative matrix factorization international joint conference on neural network. pp. 1828- 1832 ,(2008) , 10.1109/IJCNN.2008.4634046
E. Vincent, R. Gribonval, C. Fevotte, Performance measurement in blind audio source separation IEEE Transactions on Audio, Speech, and Language Processing. ,vol. 14, pp. 1462- 1469 ,(2006) , 10.1109/TSA.2005.858005
Tuomas Virtanen, Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria IEEE Transactions on Audio, Speech, and Language Processing. ,vol. 15, pp. 1066- 1074 ,(2007) , 10.1109/TASL.2006.885253
Francisco Jesus Canadas-Quesada, Pedro Vera-Candeas, Nicolas Ruiz-Reyes, Julio Carabias-Orti, Pablo Cabanas-Molero, Percussive/harmonic sound separation by non-negative matrix factorization with smoothness/sparseness constraints Eurasip Journal on Audio, Speech, and Music Processing. ,vol. 2014, pp. 26- ,(2014) , 10.1186/S13636-014-0026-5
Chris Cannam, Matthias Mauch, Rachel M. Bittner, Juan Pablo Bello, Justin Salamon, Mike Tierney, MedleyDB: A MULTITRACK DATASET FOR ANNOTATION-INTENSIVE MIR RESEARCH international symposium/conference on music information retrieval. pp. 155- 160 ,(2014)