作者: Cecilia M Casadei , Ahmad Hosseinizadeh , Spencer Bliven , Tobias Weinert , Jörg Standfuss
DOI:
关键词:
摘要: Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency …