摘要: The state-of-the-art online learning approaches are only capable of learning the metric for predefined tasks. In this paper, we consider a lifelong learning problem to mimic “human learning,” i.e., endowing a new capability to the learned metric for a new task from new online samples and incorporating the previous experiences. Therefore, we propose a new metric learning framework: lifelong metric learning (LML), which only utilizes the data of the new task to train the metric model while preserving the original capabilities. More specifically, the proposed LML maintains a common subspace for all learned metrics, named lifelong dictionary, transfers knowledge from the common subspace to learn each new metric learning task with task-specific idiosyncrasy, and redefines the common subspace over time to maximize performance across all metric tasks. For model optimization, we apply online passive aggressive …