作者: Liping Xie , Yong Luo , Shun-Feng Su , Haikun Wei
DOI:
关键词:
摘要: In this study, a graph regularized algorithm for early expression detection (EED), called GraphEED, is proposed. EED is aimed at detecting the specified expression in the early stage of a video. Existing EED detectors fail to explicitly exploit the local geometrical structure of the data distribution, which may affect the prediction performance significantly. According to manifold learning, the data in real-world applications are likely to reside on a low-dimensional submanifold embedded in the high-dimensional ambient space. The proposed graph Laplacian consists of two parts: 1) a -nearest neighbor graph is first constructed to encode the geometrical information under the manifold assumption and 2) the entire expressions are regarded as the must-link constraints since they all contain the complete duration information and it is shown that this can also be formulated as a graph regularization. GraphEED is to have a …