作者: Beatrice Alex , Donald Whyte , Daniel Duma , Roma English Owen , Elizabeth AL Fairley
DOI:
关键词:
摘要: Background Patient-based analysis of social media is a growing research field with the aim of delivering precision medicine but it requires accurate classification of posts relating to patients’ experiences. We motivate the need for this type of classification as a pre-processing step for further analysis of social media data in the context of related work in this area. In this paper we present experiments for a three-way document classification by patient voice, professional voice or other. We present results for a convolutional neural network classifier trained on English data from two different data sources (Reddit and Twitter) and two domains (cardiovascular and skin diseases). Results We found that document classification by patient voice, professional voice or other can be done consistently manually (0.92 accuracy). Annotators agreed roughly equally for each …