作者: Luigi De Simone , Enzo Caputo , Marcello Cinque , Antonio Galli , Vincenzo Moscato
DOI:
关键词:
摘要: In the railway domain, rolling stock maintenance affects service operation time and efficiency. Minimizing train unavailability is essential for reducing capital loss and operational costs. To this aim, prediction of failures of rolling stock equipment is crucial to proactively trigger proper maintenance activities. Indeed, predictive maintenance is a golden example of the digital transformation within Industry 4.0, which affects several engineering processes in the railway domain. Nowadays, it may leverage artificial intelligence and machine learning algorithms to forecast failures and schedule the optimal time for maintenance actions. Generally, rail systems deteriorate gradually over time or fail directly, leading to data that vary extremely slowly. Indeed, ML approaches for predictive maintenance should consider this type of data to accurately predict and forecast failures. This paper proposes a methodology based on Long …