作者: Cong Tran , Won-Yong Shin , Andreas Spitz
DOI:
关键词:
摘要: The discovery of community structures in social networks has gained significant attention since it is a fundamental problem in understanding the networks’ topology and functions. However, most social network data are collected from partially observable networks with both missing nodes and edges. In this article, we address a new problem of detecting overlapping community structures in the context of such an incomplete network, where communities in the network are allowed to overlap since nodes belong to multiple communities at once. To solve this problem, we introduce KroMFac, a new framework that conducts community detection via regularized nonnegative matrix factorization (NMF) based on the Kronecker graph model. Specifically, from an inferred Kronecker generative parameter matrix, we first estimate the missing part of the network. As our major contribution to the proposed framework, to improve …