摘要: In previous work, Cobb and Zakhor developed an automated mask design algorithm using optimization to produce masks which can print at smaller feature sizes. In this work, we build upon our previous approach with special regard to computational efficiency and mask manufacturability to produce an Optical Proximity Correction (OPC) algorithm which operates orders of magnitude faster and produces simpler optimized masks. The algorithm can be used for OPC of Manhattan geometry masks for which phase assignment has been previously completed. Therefore, the OPC problem is divorced from phase-mask design and the two tasks are performed independently. Our algorithm decomposes the mask features into edges and corners which can be moved from their original placements to improve the image characteristics. The resulting optimization algorithm inherently requires computation of O((rho) o3) where …