Concurrent binning of machine learning data

作者: Leo Parker Dirac , Michael Brueckner , Ralf Herbrich

DOI:

关键词:

摘要: Variables of observation records to be used to generate a machine learning model are identified as candidates for quantile binning transformations. In accordance with a particular concurrent binning plan generated for a particular variable, a plurality of quantile binning transformations are applied to the particular variable, including a first transformation with a first bin count and a second transformation with a different bin count. The first and second transformations result in the inclusion of respective parameters or weights for binned features in a parameter vector of the model. In a post-training phase run of the model, at least one parameter corresponding to a binned feature is used to generate a prediction.

参考文章(0)