A spatial-temporal linear feature learning algorithm for P300-based brain-computer interfaces

作者: Seyedeh Nadia Aghili , Sepideh Kilani , Rami N Khushaba , Ehsan Rouhani

DOI:

关键词:

摘要: Speller brain-computer interface (BCI) systems can help neuromuscular disorders patients write their thoughts by using the electroencephalogram (EEG) signals by just focusing on the speller tasks. For practical speller-based BCI systems, the P300 event-related brain potential is measured by using the EEG signal. In this paper, we design a robust machine-learning algorithm for P300 target detection. The novel spatial-temporal linear feature learning (STLFL) algorithm is proposed to extract high-level P300 features. The STLFL method is a modified linear discriminant analysis technique focusing on the spatial-temporal aspects of information extraction. A new P300 detection structure is then proposed based on the combination of the novel STLFL feature extraction and discriminative restricted Boltzmann machine (DRBM) for the classification approach (STLFL + DRBM). The effectiveness of the proposed technique …

参考文章(0)