作者: Carlos Uriarte , David Pardo , Ignacio Muga , Judit Muñoz-Matute
DOI:
关键词:
摘要: Residual minimization is a widely used technique for solving Partial Differential Equations in variational form. It minimizes the dual norm of the residual, which naturally yields a saddle-point (min-max) problem over the so-called trial and test spaces. Such min-max problem is highly non-linear, and traditional methods often employ different mixed formulations to approximate it. Alternatively, it is possible to address the above saddle-point problem by employing Adversarial Neural Networks: one network approximates the global trial minimum, while another network seeks the test maximizer. However, this approach is numerically unstable due to a lack of continuity of the text maximizers with respect to the trial functions as we approach the exact solution. To overcome this, we reformulate the residual minimization as an equivalent minimization of a Ritz functional fed by optimal test functions computed from another Ritz …