Dialogue strategy adaptation to new action sets using multi-dimensional modelling

作者: Simon Keizer , Norbert Braunschweiler , Svetlana Stoyanchev , Rama Doddipatla

DOI:

关键词:

摘要: A major bottleneck for building statistical spoken dialogue systems for new domains and applications is the need for large amounts of training data. To address this problem, we adopt the multi-dimensional approach to dialogue management and evaluate its potential for transfer learning. Specifically, we exploit pre-trained task-independent policies to speed up training for an extended task-specific action set, in which the single summary action for requesting a slot is replaced by multiple slot-specific request actions. Policy optimisation and evaluation experiments using an agenda-based user simulator show that with limited training data, much better performance levels can be achieved when using the proposed multi-dimensional adaptation method. We confirm this improvement in a crowd-sourced human user evaluation of our spoken dialogue system, comparing partially trained policies. The multi-dimensional …

参考文章(0)