作者: Michel Sarkis , Waqar Zia , Klaus Diepold
DOI:
关键词:
摘要: We propose in this paper a new method based on binary space partitions to simultaneously mesh and compress a depth map. The method divides the map adaptively into a mesh that has the form of a binary triangular tree (tritree). The nodes of the mesh are the sparse non-uniform samples of the depth map and are able to interpolate the other pixels with minimal error. We apply differential coding after that to represent the sparse disparities at the mesh nodes. We then use entropy coding to compress the encoded disparities. We finally benefit from the binary tree and compress the mesh via binary tree coding to condense its representation. The results we obtained on various depth images show that the proposed scheme leads to lower depth error rate at higher compression ratios when compared to standard compression techniques like JPEG 2000. Moreover, using our method, a depth map is represented …