Bayesian Optimisation for Quality Diversity Search with coupled descriptor functions

作者: Paul Kent , Adam Gaier , Jean-Baptiste Mouret , Juergen Branke

DOI:

关键词:

摘要: Quality Diversity (QD) algorithms such as MAP-Elites are a class of optimisation techniques that attempt to find many high performing points that all behave differently according to a user-defined behavioural metric. In this paper we propose the Bayesian Optimisation of Elites (BOP-Elites) algorithm. Designed for problems with expensive black-box objective and behaviour functions, it is able to return a QD solution-set after a relatively small number of samples. BOP-Elites models both objective and behavioural descriptors with Gaussian Process surrogate models and uses Bayesian Optimisation strategies for choosing points to evaluate in order to solve the quality-diversity problem. In addition, BOP-Elites produces high quality surrogate models which can be used after convergence to predict solutions with any behaviour in a continuous range. An empirical comparison shows that BOP-Elites significantly outperforms …

参考文章(0)