作者: Dawood Hjeij , Yusuf Biçer , Muammer Koç
DOI:
关键词:
摘要: A hybrid renewable-based integrated energy system for power-to-X conversion is designed and analyzed. The system produces several valuable commodities: Hydrogen, electricity, heat, ammonia, urea, and synthetic natural gas (SNG). Hydrogen is produced and stored for power generation from solar energy by utilizing solid oxide electrolyzers and fuel cells. Ammonia, urea, and synthetic natural gas are produced to mitigate hydrogen transportation and storage complexities and act as energy carriers or valuable chemical products. The system is analyzed from a thermodynamic perspective, the exergy destruction rates are compared, and the effects of different parameters are evaluated. The overall system's energy efficiency is 56%, while the exergy efficiency is 14%. The highest exergy destruction occurs in the Rankine cycle with 48 MW. The mass flow rates of the produced chemicals are 0.064, 0.088, and 0.048 …