作者: Elham Hamed , Ekaterina Novitskaya , Jun Li , Alexander Setters , Woowon Lee
DOI:
关键词:
摘要: Trabecular bone is a porous nanocomposite material with a hierarchical structure. In this study, a multi-scale modeling approach, addressing scales spanning from the nanometer (collagen-mineral) to mesoscale (trabecular bone) levels, was developed to determine the elastic moduli of trabecular bone. Then, the predicted modeling results were compared with experimental data obtained by compression testing of bovine femur trabecular bone samples loaded in two different directions; parallel to the femur neck axis and perpendicular to that. Optical microscopy, scanning electron microscopy and micro-computed tomography techniques were employed to characterize the structure and composition of the samples at different length scales and provide the inputs needed for the modeling. To obtain more insights on the structure of bone, especially on the interaction of its main constituents (collagen and mineral phases …