A computational framework for learning from complex data: Formulations, algorithms, and applications

作者: Wenlu Zhang

DOI:

关键词:

摘要: Many real-world processes are dynamically changing over time. As a consequence, the observed complex data generated by these processes also evolve smoothly. For example, in computational biology, the expression data matrices are evolving, since gene expression controls are deployed sequentially during development in many biological processes. Investigations into the spatial and temporal gene expression dynamics are essential for understanding the regulatory biology governing development. In this dissertation, I mainly focus on two types of complex data: genome-wide spatial gene expression patterns in the model organism fruit fly and Allen Brain Atlas mouse brain data. I provide a framework to explore spatiotemporal regulation of gene expression during development. I develop evolutionary co-clustering formulation to identify co-expressed domains and the associated genes simultaneously over …

参考文章(0)