Enhancing robustness in video recognition models: Sparse adversarial attacks and beyond

作者: Ronghui Mu , Leandro Marcolino , Qiang Ni , Wenjie Ruan

DOI:

关键词:

摘要: Recent years have witnessed increasing interest in adversarial attacks on images, while adversarial video attacks have seldom been explored. In this paper, we propose a sparse adversarial attack strategy on videos (DeepSAVA). Our model aims to add a small human-imperceptible perturbation to the key frame of the input video to fool the classifiers. To carry out an effective attack that mirrors real-world scenarios, our algorithm integrates spatial transformation perturbations into the frame. Instead of using the l p norm to gauge the disparity between the perturbed frame and the original frame, we employ the structural similarity index (SSIM), which has been established as a more suitable metric for quantifying image alterations resulting from spatial perturbations. We employ a unified optimisation framework to combine spatial transformation with additive perturbation, thereby attaining a more potent attack. We design …

参考文章(0)