作者: Carly M Shanks , Karin Rothkegel , Matthew D Brooks , Chia-Yi Cheng , José M Alvarez
DOI:
关键词:
摘要: A plant’s response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics; the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its “hit-and-run” mode of target gene regulation and temporal transcriptional cascade identified by “Network Walking”. Spatial aspects …