作者: Hamidreza Rokhsati , Khosro Rezaee , Aaqif Afzaal Abbasi , Samir Brahim Belhaouari , Jana Shafi
DOI:
关键词:
摘要: Visual observation and dermoscopic analysis are the most common methods of diagnosing skin cancer. In advanced stages, melanomas spread faster and are less responsive to treatment. Because different lesions in the skin appear similar to one another and sometimes errors in identification occur, the accuracy of diagnosis will decrease significantly when the amount of received images is large. However, the proposed methods for estimating skin lesions and their separation from melanoma have uncertainties and are not generalizable. This paper proposes an optimal decision tree (DT)-based approach, including fuzzy-ID3-pValue and Bayes learning algorithms, which overcomes these challenges. When classifying images, DTs employ a multi-stage procedure to partition the feature space, which enhances their ease of use, precision, and speed. Inference engines are used in fuzzy logic to derive logical …