作者: Najam E Sahar , Bjorn JM Robroek , Robert TE Mills , Marc G Dumont , Janna M Barel
DOI:
关键词:
摘要: Ombrotrophic peatlands are important long-term sinks for atmospheric carbon as plant productivity exceeds litter decomposition. Changes in plant community composition may alter decomposition rates through alterations in microbial communities and activity. Such plant community driven changes in decomposition rates may however differ between microhabitats. Nevertheless, the microhabitat-context-dependency of plant community composition effects on decomposition remains poorly understood. We used a long-term (> 10 year) plant removal experiment to study how vascular plant functional types (PFTs, i.e. graminoids and ericoids) influence decomposition processes in wet lawns and hummocks. We employed the Tea Bag Index (TBI) as an indicator for early litter decomposition and carbon stabilization and assessed the potential activity of five hydrolytic extracellular enzymes (EEAs) as indicators for …