作者: Sylvia L Hanna , Saumil Chheda , Ryther Anderson , Debmalya Ray , Christos D Malliakas
DOI:
关键词:
摘要: Energetically driven reduction of porosity through entanglement is ubiquitous in nature and synthetic systems. This entanglement decreases valuable internal pore space useful for applications, such as catalysis, storage, and sensing. Here, we describe the discovery of spontaneous de-interpenetration in a 6-fold interpenetrated uranium-based metal-organic framework (MOF), NU-1303-6. De-interpenetration transforms NU-1303-6 (14.2 and 19.8 Å pores) to its larger pore (40.7 Å) non-interpenetrated counterpart, which possesses a record-high 96.6% void fraction and 9.2 cm3g−1 pore volume. Density functional theory calculations reveal that charged point-point repulsions between anionic, closely positioned uranium-based nodes drive this phenomenon. These repulsions compete with water molecules that hydrogen bond nearby networks together, favoring interpenetration. Controlling the interplay between these …