Fusion of drone-Based RGB and multi-spectral imagery for shallow water bathymetry inversion

作者: Evangelos Alevizos , Dimitrios Oikonomou , Athanasios V Argyriou , Dimitrios D Alexakis

DOI:

关键词:

摘要: Shallow bathymetry inversion algorithms have long been applied in various types of remote sensing imagery with relative success. However, this approach requires that imagery with increased radiometric resolution in the visible spectrum be available. The recent developments in drones and camera sensors allow for testing current inversion techniques on new types of datasets with centimeter resolution. This study explores the bathymetric mapping capabilities of fused RGB and multispectral imagery as an alternative to costly hyperspectral sensors for drones. Combining drone-based RGB and multispectral imagery into a single cube dataset provides the necessary radiometric detail for shallow bathymetry inversion applications. This technique is based on commercial and open-source software and does not require the input of reference depth measurements in contrast to other approaches. The robustness of this method was tested on three different coastal sites with contrasting seafloor types with a maximum depth of six meters. The use of suitable end-member spectra, which are representative of the seafloor types of the study area, are important parameters in model tuning. The results of this study are promising, showing good correlation (R2 > 0.75 and Lin’s coefficient > 0.80) and less than half a meter average error when they are compared with sonar depth measurements. Consequently, the integration of imagery from various drone-based sensors (visible range) assists in producing detailed bathymetry maps for small-scale shallow areas based on optical modelling.

参考文章(0)