A semi-agnostic ansatz with variable structure for variational quantum algorithms

作者: Matias Bilkis , Marco Cerezo , Guillaume Verdon , Patrick J Coles , Lukasz Cincio

DOI:

关键词:

摘要: Quantum machine learning—and specifically Variational Quantum Algorithms (VQAs)—offers a powerful, flexible paradigm for programming near-term quantum computers, with applications in chemistry, metrology, materials science, data science, and mathematics. Here, one trains an ansatz, in the form of a parameterized quantum circuit, to accomplish a task of interest. However, challenges have recently emerged suggesting that deep ansatzes are difficult to train, due to flat training landscapes caused by randomness or by hardware noise. This motivates our work, where we present a variable structure approach to build ansatzes for VQAs. Our approach, called VAns (Variable Ansatz), applies a set of rules to both grow and (crucially) remove quantum gates in an informed manner during the optimization. Consequently, VAns is ideally suited to mitigate trainability and noise-related issues by keeping the ansatz …

参考文章(0)