Opposite elements in clutters

作者: Ahmad Abdi , Ricardo Fukasawa , Laura Sanita

DOI:

关键词:

摘要: Let E be a finite set of elements, and let L be a clutter over ground set E. We say distinct elements e, f are opposite if every member and every minimal cover of L contains at most one of e, f. In this paper, we investigate opposite elements and reveal a rich theory underlying such a seemingly simple restriction. The clutter C obtained from L after identifying some opposite elements is called an identification of L; inversely, L is called a split of C. We will show that splitting preserves three clutter properties, i.e., idealness, the max-flow min-cut property, and the packing property. We will also display several natural examples in which a clutter does not have these properties but a split of them does. We will develop tools for recognizing when splitting is not a useful operation, and as well, we will characterize when identification preserves the three mentioned properties. We will also make connections to spanning …

参考文章(0)