作者: RW Ibrahim , SB Hadid , Shaher Momani , C Meshram
DOI:
关键词:
摘要: Researchers show that there is a fundamental association between the symmetric and traveling wave solutions. They have shown that all symmetric waves are traveling waves. In this paper, we establish new analytic solution collections of nonlinear conformable time-fractional wave dynamical equation, equations of Khokhlov-Zabolotskaya (KZ) type in a complex domain. For this purpose, we build a new definition of a symmetric conformable differential operator (SCDO). The operator has a symmetric illustration in the open unit disk. By using SCDO, we propagate a class of special wave dynamical equation type KZ equation. The consequences show that the obtainable methods are powerful, dependable and formulate to apply to all classes of complex differential equations.