作者: Mohammad Masoudi , Hossein Fazeli , Rohaldin Miri , Helge Hellevang
DOI:
关键词:
摘要: The optimal CO2 storage operation requires high permeability in the near-well region in order to keep it safe and cost-efficient. Nucleation and growth of salt crystals driven by the evaporation of formation water into under-saturated (dry) super-critical CO2 streams result in the changes in porosity and permeability of the near well-bore area. Permeability reduction is one of the main reasons for injectivity losses in the context of CO2 storage in saline aquifers. According to recent studies, during CO2 storage, salt crystals grow in two different forms: 1) single, large crystals in the aqueous phase, and 2) aggregates of micro-meter size salt crystals in the CO2-rich vapor phase. All previous numerical studies at pore-scale have addressed the formation of single, large crystals in the aqueous phase. In this work we have developed a 3D pore-scale reactive transport solver based on a D3Q19 advection-diffusion Lattice …