作者: Maurizio Titz , Franz Kaiser , Johannes Kruse , Dirk Witthaut
DOI:
关键词:
摘要: A reliable supply with electric power is vital for our society. Transmission line failures are among the biggest threats for power grid stability as they may lead to a splitting of the grid into mutual asynchronous fragments. New conceptual methods are needed to assess system stability that complement existing simulation models. In this article, we propose a combination of network science metrics and machine learning models to predict the risk of desynchronization events. Network science provides metrics for essential properties of transmission lines such as their redundancy or centrality. Machine learning models perform inherent feature selection and, thus, reveal key factors that determine network robustness and vulnerability. As a case study, we train and test such models on simulated data from several synthetic test grids. We find that the integrated models are capable of predicting desynchronization events after …