作者: Guh-Hwan Lim , Seonhee Bae , Yong-Jae Kim , Kyu Seung Lee , Hyunjin Cho
DOI:
关键词:
摘要: Carbon nanotube buckypaper has been considered as one of the promising candidates for chemiresistive sensor applications, especially with environmental monitoring purpose due to large surface area, device flexibility, and the broad spectrum of responsive chemical vapor molecules. However, one of typical drawbacks in carbon-based sensors is incomplete recovery to their initial state after chemical reactions with analytes, degrading sensing reproducibility. In this work, we present a thermally stable and robust boron nitride nanotube/carbon nanotube (BNCNT) hybrid paper for self-enhanced chemiresistive sensing with full reversibility. Boron nitride nanotube (BNNT) plays an essential role in long-term reliability (33 days) at the operating temperature of 200 °C. In addition, a finite-element method was applied to understand the thermal behavior of the BNCNT network structure. The BNCNT paper-based …