Inferring goals with gaze during teleoperated manipulation

作者: Reuben M Aronson , Nadia Almutlak , Henny Admoni

DOI:

关键词:

摘要: Assistive robot manipulators help people with upper motor impairments perform tasks by themselves. However, teleoperating a robot to perform complex tasks is difficult. Shared control algorithms make this easier: these algorithms predict the user’s goal, autonomously generate a plan to accomplish the goal, and fuse that plan with the user’s input. To accurately predict the user’s goal, these algorithms typically use the user’s input command (e.g., joystick input) directly. We use another sensing modality: the user’s natural eye gaze behavior, which is highly task-relevant and informative early in the task. We develop an algorithm using hidden Markov models to infer goals from natural eye gaze behavior that appears while users are teleoperating a robot. We show that gaze-based predictions outperform goal prediction based on the control input and that our sequence model improves the prediction quality relative to …

参考文章(0)