作者: Luca Banetta , Francesco Leone , Carmine Anzivino , Michael S Murillo , Alessio Zaccone
DOI:
关键词:
摘要: We present a theoretical framework to investigate the microscopic structure of concentrated hard-sphere colloidal suspensions under strong shear flows by fully taking into account the boundary-layer structure of convective diffusion. We solve the pair Smoluchowski equation with shear separately in the compressing and extensional sectors of the solid angle, by means of matched asymptotics. A proper, albeit approximate, treatment of the hydrodynamic interactions in the different sectors allows us to construct a potential of mean force containing the effect of the flow field on pair correlations. We insert the obtained pair potential in the Percus-Yevick relation and use the latter as a closure to solve the Ornstein-Zernike integral equation. For a wide range of either the packing fraction η and the Péclet (Pe) number, we compute the pair correlation function and extract scaling laws for its value at contact. For all the …