作者: Kylie E Williams , Julia Andraca Harrer , Steven A LaBelle , Kelly Leguineche , Jarred Kaiser
DOI:
关键词:
摘要: Mechanical loading is integral to bone development and repair. The application of mechanical loads through rehabilitation are regularly prescribed as a clinical aide following severe bone injuries. However, current rehabilitation regimens typically involve long periods of non-loading and rely on subjective patient feedback, leading to muscle atrophy and soft tissue fibrosis. While many pre-clinical studies have focused on unloading, ambulatory loading, or direct mechanical compression, rehabilitation intensity and its impact on the local strain environment and subsequent bone healing have largely not been investigated. This study combines implantable strain sensors and subject-specific finite element models in a pre-clinical rodent model with a defect size on the cusp of critically-sized. Animals were enrolled in either high or low intensity rehabilitation one week post injury to investigate how rehabilitation intensity …