作者: Zhen Luo , Yufan Xia , Shuang Chen , Xingxing Wu , Ran Zeng
DOI:
关键词:
摘要: While the rechargeable aqueous zinc-ion batteries (AZIBs) have been recognized as one of the most viable batteries for scale-up application, the instability on Zn anode–electrolyte interface bottleneck the further development dramatically. Herein, we utilize the amino acid glycine (Gly) as an electrolyte additive to stabilize the Zn anode–electrolyte interface. The unique interfacial chemistry is facilitated by the synergistic “anchor-capture” effect of polar groups in Gly molecule, manifested by simultaneously coupling the amino to anchor on the surface of Zn anode and the carboxyl to capture Zn2+ in the local region. As such, this robust anode–electrolyte interface inhibits the disordered migration of Zn2+, and effectively suppresses both side reactions and dendrite growth. The reversibility of Zn anode achieves a significant improvement with an average Coulombic efficiency of 99.22% at 1 mA cm−2 and 0.5 mAh cm−2 …