作者: Alejandro Cervantes , Inés M Galván , Pedro Isasi
DOI:
关键词:
摘要: Purpose of this work is to show that the Particle Swarm Optimization Algorithm may improve the results of same well known Machine Learning methods in the resolution of discrete classification problems. A binary version of the PSO algorithm is used to obtain a set of logic rules that map binary masks (that represent the attribute values), lo the available classes. This algorithm has been tested both in a single pass mode and in an iterated mode on a well-known set of problems, called the MONKS set, lo compare the PSO results against the results reported for that domain by the application of some common Machine Learning algorithms.