作者: Milad Afzalan , Farrokh Jazizadeh
DOI:
关键词:
摘要: With the increased adoption of distributed energy resources (DERs) and renewables, such as solar panels at the building level, consumers turn into prosumers with generation capability to supply their on-site demand. The temporal complementarity between supply and demand at the building level provides opportunities for energy exchange between prosumers and consumers towards community-level self-sufficiency. Investigating different aspects of community-level energy exchange in cyber and physical layers has received attention in recent years with the increase in renewables adoption. In this study, we have presented an in-depth investigation into the impact of energy exchange through the quantification of temporal energy deficit–surplus complementarity and its associated self-sufficiency capacities by considering the impact of variations in community infrastructure configurations, variations in household energy use patterns, and the potential for user adaptation for load flexibility. To this end, we have adopted a data-driven simulation using real-world data from a case-study neighborhood consisting of ~250 residential buildings in Austin, TX with a mix of prosumers and consumers and detailed data on decentralized DERs. By accounting for the uncertainties in energy consumption patterns across households, different levels of PV and energy storage integration, and different modalities of user adaptation, various scenarios of operations were simulated. The analysis showed that with PV integration of more than 75%, energy exchange could result in self-sufficiency for the entire community during peak generation hours from 11 a.m. to 3 p.m …