作者: Milad Afzalan , Farrokh Jazizadeh , Hoda Eldardiry
DOI:
关键词:
摘要: With the widespread adoption of smart meters in buildings, an unprecedented amount of high-resolution energy data is released, which provides opportunities to understand building consumption patterns. Accordingly, research efforts have employed data analytics and machine learning methods to segment customers based on their load profiles, which help utilities and energy providers promote customized/personalized targeting for energy programs. Existing energy consumption segmentation techniques use assumptions that could reduce clusters’ quality in representing their members. Therefore, in this paper, we investigated a two-stage clustering method for capturing more representative load shape temporal patterns and peak demands through a cluster merging approach. In the first stage, load shapes are clustered (using classical clustering algorithms) by allowing a large number of clusters to accurately …