作者: Catrinel Turcanu , Teddy Craciunescu
DOI:
关键词:
摘要: The paper proposes a new method for tomographic reconstructions. Unlike nuclear medicine applications, in physical science problems we are often confronted with limited data sets: constraints in the number of projections or limited angle views. The problem of image reconstruction from projections may be considered as a problem of finding an image (solution) having projections that match the experimental ones. In our approach, we choose a statistical correlation coefficient to evaluate the fitness of any potential solution. The optimization process is carried out by an evolutionary algorithm. Our algorithm has some problem-oriented characteristics. One of them is that a chromosome, representing a potential solution, is not linear but coded as a matrix of pixels corresponding to a two-dimensional image. This kind of internal representation reflects the genuine manifestation and slight differences between two points situated in the original problem space give rise to similar differences once they become coded. Another particular feature is a newly built crossover operator: the grid-based crossover, suitable for high dimension two-dimensional chromosomes. Except for the population size and the dimension of the cutting grid for the grid-based crossover, all the other parameters of the algorithm are independent of the geometry of the tomographic reconstruction. The performances of the method are evaluated in comparison with a traditional tomographic method, based on the maximization of the entropy of the image, that proved to work well with limited data sets. The test phantom is typical for an application with limited data sets: the determination of the …