作者: Márcia HC Nascimento , Wena D Marcarini , Gabriely S Folli , Walter G da Silva Filho , Leonardo L Barbosa
DOI:
关键词:
摘要: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worst global health crisis in living memory. The reverse transcription polymerase chain reaction (RT-qPCR) is considered the gold standard diagnostic method, but it exhibits limitations in the face of enormous demands. We evaluated a mid-infrared (MIR) data set of 237 saliva samples obtained from symptomatic patients (138 COVID-19 infections diagnosed via RT-qPCR). MIR spectra were evaluated via unsupervised random forest (URF) and classification models. Linear discriminant analysis (LDA) was applied following the genetic algorithm (GA-LDA), successive projection algorithm (SPA-LDA), partial least squares (PLS-DA), and a combination of dimension reduction and variable selection methods by particle swarm optimization (PSO-PLS-DA). Additionally, a consensus class was used. URF models can identify structures even in …