作者: Ruiwen Shao , Zhefei Sun , Lei Wang , Jianhai Pan , Luocai Yi
DOI:
关键词:
摘要: Alloying‐type antimony (Sb) with high theoretical capacity is a promising anode candidate for both lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Given the larger radius of Na+ (1.02 Å) than Li+ (0.76 Å), it was generally believed that the Sb anode would experience even worse capacity degradation in SIBs due to more substantial volumetric variations during cycling when compared to LIBs. However, the Sb anode in SIBs unexpectedly exhibited both better electrochemical and structural stability than in LIBs, and the mechanistic reasons that underlie this performance discrepancy remain undiscovered. Here, using substantial in situ transmission electron microscopy, X‐ray diffraction, and Raman techniques complemented by theoretical simulations, we explicitly reveal that compared to the lithiation/delithiation process, sodiation/desodiation process of Sb anode displays a previously unexplored two …