摘要: Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit structured as a phosphorelay embedded in multiple transcriptional feedback loops, and which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are'bandpass'-like, in the sense that activation occurs within a limited band of Spo0A∼ P concentrations, and have recently been shown to pulse in a cell-cycle-dependent fashion. Additionally, the core phosphorelay is an architectural variant of the canonical two-component signaling system, which allows signal integration from a larger number of inputs, including two types of phosphatases that act on different protein components. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation and the …