作者: Sayali Pravin Metkar , Gasper Fernandes , Ajinkya Nitin Nikam , Soji Soman , Sumit Birangal
DOI:
关键词:
摘要: A key diterpene lactone of Andrographis paniculata, i.e., andrographolide (AG), exhibits a variety of physiological properties, including hepatoprotection. The limited solubility, short half-life, and poor bioavailability limits the pharmacotherapeutic potential of AG. Therefore, in this study we aimed to formulate and optimize AG-loaded nanoliposomes (AGL) using the Design of Experiment (DOE) approach and further modify the surface of the liposomes with mannosylated chitosan to enhance its oral bioavailability. Physical, morphological, and solid-state characterization was performed to confirm the formation of AGL and Mannosylated chitosan-coated AGL (MCS-AGL). Molecular docking studies were conducted to understand the ligand (MCS) protein (1EGG) type of interaction. Further, in vitro release, ex vivo drug permeation, and in vivo pharmacokinetics studies were conducted. The morphological studies confirmed that AGL was spherical and a layer of MCS coating was observed on their surface, forming the MCS-AGL. Further increase in the particle size and change in the zeta potential of MCS-AGL confirms the coating on the surface of AGL (375.3 nm, 29.80 mV). The in vitro drug release data reflected a sustained drug release profile from MCS-AGL in the phosphate buffer (pH 7.4) with 89.9 ± 2.13% drug release in 8 h. Ex vivo permeation studies showed higher permeation of AG from MCS-AGL (1.78-fold) compared to plain AG and AGL (1.37-fold), indicating improved permeability profiles of MCS-AGL. In vivo pharmacokinetic studies inferred that MCS-AGL had a 1.56-fold enhancement in AUC values compared to plain AG, confirming that …