作者: Daniel R Peters , Olalekan AM Popoola , Roderic L Jones , Nicholas A Martin , Jim Mills
DOI:
关键词:
摘要: Ambient air pollution poses a major global public health risk. Lower-cost air quality sensors (LCSs) are increasingly being explored as a tool to understand local air pollution problems and develop effective solutions. A barrier to LCS adoption is potentially larger measurement uncertainty compared to reference measurement technology. The technical performance of various LCSs has been tested in laboratory and field environments, and a growing body of literature on uses of LCSs primarily focuses on proof-of-concept deployments. However, few studies have demonstrated the implications of LCS measurement uncertainties on a sensor network's ability to assess spatiotemporal patterns of local air pollution. Here, we present results from a 2-year deployment of 100 stationary electrochemical nitrogen dioxide (NO2) LCSs across Greater London as part of the Breathe London pilot project (BL). We evaluated sensor performance using collocations with reference instruments, estimating ∼ 35 % average uncertainty (root mean square error) in the calibrated LCSs, and identified infrequent, multi-week periods of poorer performance and high bias during summer months. We analyzed BL data to generate insights about London's air pollution, including long-term concentration trends, diurnal and day-of-week patterns, and profiles of elevated concentrations during regional pollution episodes. These findings were validated against measurements from an extensive reference network, demonstrating the BL network's ability to generate robust information about London's air pollution. In cases where the BL network did not effectively capture features that …